Courses

Course categories

We found 403 courses available for you
See

Advanced Techniques in Big Data Processing and Distributed Computing

17 Lessons
Beginner

Embark on a transformative journey into the cutting-edge domain of …

What you'll learn
Advanced Data Partitioning Strategies: Explore sophisticated techniques to optimally partition and distribute large datasets across distributed systems.
Parallel Processing and Optimisation: Master the art of parallelism, learning how to efficiently execute tasks across multiple nodes for enhanced performance.
Distributed Query Optimisation: Understand advanced methods for optimising queries in distributed databases and systems.
Advanced Algorithms for Data Analysis: Dive into intricate algorithms that facilitate efficient data analysis and manipulation in distributed environments.
Real-time Stream Processing: Develop expertise in processing data streams in real time, extracting insights from dynamic and continuous data sources.

Statistical Analysis for Data Science: Fundamentals and Applications

18 Lessons
Intermediate

Embark on a transformative journey into the world of “Statistical …

What you'll learn
Introduction to Statistical Analysis: Understand the fundamental concepts of statistical analysis and its role in extracting insights from data.
Exploratory Data Analysis: Learn techniques to summarise and visualise data, identifying patterns, trends, and potential outliers.
Probability and Probability Distributions: Gain proficiency in understanding and working with probability concepts and various probability distributions.
Sampling Techniques and Distributions: Explore different sampling methods and understand the properties of sampling distributions.
Statistical Inference and Hypothesis Testing: Master the art of drawing conclusions about a population using sample data through hypothesis testing.

Advanced Statistical Methods in Data Science: Techniques and Insights

16 Lessons
Intermediate

Embark on an enlightening journey into the realm of “Advanced …

What you'll learn
Multivariate Analysis and Dimensionality Reduction: Master techniques to explore relationships between multiple variables and reduce the complexity of high-dimensional data.
Time Series Analysis and Forecasting Techniques: Gain proficiency in analysing time-dependent data and predicting future trends using advanced time series models.
Advanced Non-linear Regression Models: Explore non-linear regression models to capture complex relationships between variables, enabling accurate predictions.
Bayesian Statistical Methods and Inference: Understand Bayesian techniques for probabilistic reasoning, updating beliefs, and making informed decisions under uncertainty.
Machine Learning Integration for Advanced Analytics: Learn how to integrate machine learning algorithms into advanced statistical analyses for predictive and prescriptive insights.

Mastering Statistical Analysis for Data-driven Decision Making

19 Lessons
Beginner

Embark on an empowering journey to “Mastering Statistical Analysis for …

What you'll learn
Foundations of Statistical Analysis: Establish a strong understanding of statistical concepts, their significance, and their role in data-driven decision-making.
Exploratory Data Analysis and Descriptive Statistics: Learn to summarise and visualise data effectively to uncover initial insights and patterns.
Probability and Probability Distributions: Gain expertise in probability theory and understand various probability distributions for data analysis.
Sampling Techniques and Sampling Distributions: Explore sampling methods and understand how to make inferences about populations based on sample data.
Statistical Inference and Hypothesis Testing: Master the art of making informed decisions through hypothesis testing and confidence intervals.

Natural Language Processing Fundamentals: From Basics to Applications

18 Lessons
Intermediate

Embark on a transformative journey into the captivating world of …

What you'll learn
Introduction to Natural Language Processing (NLP): Understand the significance of NLP, its applications, and its role in transforming unstructured text data.
Language Processing Basics: Tokenization and Text Preprocessing: Learn to break down text into tokens, remove noise, and preprocess text for analysis.
Syntactic Analysis and Part-of-Speech Tagging: Explore the structure of sentences and understand the roles of different words in sentences using part-of-speech tagging.
Sentiment Analysis and Opinion Mining: Acquire the skills to determine sentiment and opinions expressed in text, enabling you to gauge sentiment polarity.

Advanced Techniques in Natural Language Processing: Text Analytics and Beyond

17 Lessons
Intermediate

Embark on an illuminating journey into the realm of “Advanced …

What you'll learn
Deep Learning for Text Classification and Sentiment Analysis: Master advanced deep learning methods for classifying and analysing sentiment in text, enabling accurate sentiment identification and classification.
Natural Language Generation: Techniques and Applications: Explore techniques to generate human-like text, including automatic summarisation, content generation, and creative writing.
Advanced Named Entity Recognition and Entity Linking: Gain expertise in identifying and linking named entities, such as people, locations, and organizations, in text for enhanced information retrieval.
Text Summarization: Extractive and Abstractive Approaches: Learn both extractive and abstractive text summarisation methods, condensing large volumes of text into concise summaries.

Mastering NLP: Deep Learning for Natural Language Understanding

16 Lessons
Intermediate

Embark on a transformative journey into the realm of “Mastering …

What you'll learn
Introduction to Deep Learning for Natural Language Processing (NLP): Grasp the fundamental concepts of deep learning and its transformative role in enhancing language understanding and generation.
Word Embeddings and Distributed Representations: Understand how to represent words as dense vectors using techniques like Word2Vec and GloVe for improved language analysis.
Recurrent Neural Networks (RNNs) for Sequence Modelling: Dive into the architecture of RNNs, a foundational deep learning model for processing sequential data like text.
Long Short-Term Memory (LSTM) Networks: Gain proficiency in LSTMs, a type of RNN designed to overcome the vanishing gradient problem and effectively model long-range dependencies in text.
Gated Recurrent Units (GRUs) and Their Applications: Explore GRUs, an alternative to LSTMs, and their use cases in sequence modelling and text analysis.

Mastering Time Series Analysis: Foundations and Forecasting Techniques

19 Lessons
Intermediate

Immerse yourself in the world of “Mastering Time Series Analysis: …

What you'll learn
Introduction to Time Series Analysis: Grasp the fundamentals of time series data, its characteristics, and its significance in various fields.
Characteristics of Time Series Data: Understand the distinctive traits of time series data, including trends, seasonality, and noise, and their impact on analysis.
Time Series Components: Trend, Seasonality, and Noise: Delve into the identification and interpretation of trend patterns, seasonal variations, and stochastic noise within time series data.
Stationarity and its Importance in Time Series Analysis: Learn the concept of stationarity and its crucial role in making time series data suitable for analysis.
Autocorrelation and Partial Autocorrelation Functions: Master the use of autocorrelation and partial autocorrelation functions to detect patterns and relationships in sequential data.